| have 20 minutes to rip through this, and | see that | am standing between you and lunch. So strap in. Here we go...

Good morning. My name is...

First, a message from

our Sponsor...

1% 428 RN I #AE) s 2 41 52 s

|What I picture in my 1:'.1'-é¥a,d...‘iI

When | work on presentations, this is what | picture in my head.

What it ends up looking like...

Actually that’s not quite right. The guy
who made this is clearly more talented.

Unfortunately, THIS is what it typically ends up looking like.

Just managing expectations.

Who am I?

Frank Seesink
e Senior Network Engineer, UNC Chapel Hill

Part of network DevOps group

Involved in network automation for years
Love languages, both human & computer
Programming since I was 12 years old

Formally B.S. in Computer Science with
all coursework for an M.S. in C.S.

JOAT - databases, OSes, networking,...

That reminds me.
For anything useful, credit goes to UNC Chapel Hill for allowing me to attend.
For any mistakes/errors/etc., that all falls on me.

otoTiz:ike. ..

In 2022 I taught myself & fell in love with Go.

At TechEx 2023 I did a session titled “When
You are Ready to GO Beyond PYTHON ” gy

explaining the “WHY™.
For full details, see

https://frank.seesink.com/presentations/InternetTechEx-Fall2023

This session is intended to cover the “HOW™.

https://frank.seesink.com/presentations/Internet2TechEx-Fall2023/

TL:DR of “Why”

e Compilation vs. interpretation

e performance

e single binary executable

e No external dependencies

e cross-compile to other OS/architectures
e Static typing / Inference typing

e Concurrency
¢ Go benefits from 30+ years of observations

into what makes an effective language

Created at Google in the mid-2000s by many of the same folks behind the C programming language, Go benefits from more than 30 years of observations
into what makes an effective language. From a very fast compiler allowing for quick iteration during development (very much like Python) while providing
all the benefits of a compiled language such as static type checking/etc., to the built-in concurrency support and module management setup, Go offers the

“sweet spot” between interpreted languages like Python and low level compiled languages such as C and Rust.

History of Programming
Languages

Getting Started with

Go.dev

@ go.dev
i 1 1 l
O p tl O n Why Go ~ Learn Docs ~ Packages Community ~

Build simple, secure, scalable systems
with Go

~ An open-source programming language supported by Google
+ Easy to learn and great for teams

v Built-in concurrency and a robust standard library

v Large ecosystem of partners, communities, and tools

Linux, and more

nd authenticates modules using the Go module mirror and Go checksum

Companies using Go

Organizations in every industry use Go to power their software and services View all stories

CLOUDFLARE'

3’: 22, 0 Meta =:

https://go.dev/

Now in order to program in Go, you need to have the Go compiler installed. Much as | did in my other 2023 TechEx session “Network Automation Tapas -
Getting Started with Python”, let’s quickly cover getting Go installed on the various OSes.

The official Go site is Go.dev, and from here you simply click on the “Download” button to find your installer.

Go.dev

@ godev

ion #1
Optlo n Why Go ~ Learn Packages Community ~

All releases

After downloading a binary release suitable for your system, please follow the installation instructions.
If you are building from source, follow the source installation instructions.
See the release history for more information about Go releases.

As of Go 1.13, the go command by default downloads and authenticates modules using the Go module mirror and Go checksum database run
by Google. See golang. i for privacy i ion about these services and the go command documentation for
configuration details including how to disable the use of these servers or use different ones.

Featured downloads

Microsoft Windows Apple macOS (ARM64) Apple macOS (x86-64) Linux

Windows 10 or later, Intel 64-bit macOS 11 or later, Apple 64-bit macOS 11 or later, Intel 64-bit Linux 2.6.32 or later, Intel 64-bit
processor processor processor processor

[go1.233wind: d64.msi [9012334 pkg) 9012334 d64.pkg [901233 inux-amdsa.

Source

0 901233500 targz

Stable versions

go1.23.3 ~

File name Kind Size SHA256 Checksum

g01.23.3.src.tar.gz Source 27MB

go01.23.3.darwin-amd64.tar.gz Archive macOS x86-64 72MB

https://go.dev/

Here you can see that they offer installers for all the major OSes (and quite a few minor ones as well). Each installer is aimed at a particular OS/architecture
combination. | have an M3 MacBook Pro, so here you can see | have highlighted the macOS ARM64 installer package.

Go.dev

Option #1

Stable versions

go01.23.3 ~

File name Kind os Arch Size SHA256 Checksum

go1.23.3.src.tar.gz Source 27MB

g01.23.3.darwin-amd64.tar.gz Archive macO0S x86-64 72MB

g01.23.3.darwin-amd64.pkg Installer macOS x86-64 72MB

go1.23.3.darwin-armé4.tar.gz Archive macOS ARM64 68MB

gol.23.3.darwin-arm64.pkg Installer macOS ~ ARM64 69MB

g01.23.3.linux-386.tar.gz Archive Linux x86 68MB

qo inux-; 64.tar.g Archive Linux x86-64 70MB

.3.lin i Archive Linux ARM64 67MB
g01.23.3.linux-armvél.tar.gz Archive Linux ARMV6 68MB
go1.23.3 windows-386.zip Archive Windows x86 77MB

go1.23.3windows-386.msi Installer ~ Windows x86 62MB

go1.23.3windows-amd64.zip Archive Windows x86-64 78MB

go1.23.3.windows-amd64.msi Installer Windows x86-64 64MB

Other Ports ~

go1.22.9 ~

https://go.dev/

However, if you don’t see your particular OS/arch at the top, simply scroll down a little and you will find plenty more. For example, if you wanted to install
the Go compiler on a Raspberry Pi, here is the Linux ARM64 installer. And even further down, if you click on “Other Ports”, you will be taken to yet more
installers, including ones for FreeBSD, NetBSD, OpenBSD, the Windows ARM64 installer, and even versions that run on the RISC V chip. We will cover this
cross—compilation aspect a bit more later.

[

Installing

Install - Windows

"M Go Programming Language arm64 go1.23.3 Setup

Welcome to the Go Programming
Language arm64 go1.23.3 Setup Wizard

The Setup Wizard will install Go Programming Language
armé64 go1.23.3 on your computer. Click Next to continue or
Cancel to exit the Setup Wizard.

Cancel

To install the Go compiler on Windows using the official Go installer .MSI, you simply run it like you do any other Windows installer. The steps here are
pretty self-explanatory.

nstall

"M Go Programming Language arm64 go1.23.3 Setup

End-User License Agreement

Please read the following license agreement carefully

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other

—

81 accept the terms in the License Agreement

Install - Windows

"M Go Programming Language arm64 go1.23.3 Setup

Destination Folder
Click Next to install to the default folder or dick Change to choose another.

Install Go Programming Language armé4 go1.23.3 to:

IC: \Program Files\Go\

Change...

Notice that the default location for the Go compiler is C:\Program Files\Go\.

"M Go Programming Language arm64 go1.23.3 Setup - X
e
Ready to install Go Programming Language arm64 go1.23.3 ‘

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Back % Install Cancel

At this point you should notice the shield symbol, indicating that you’ll need to have admin level access to install.

Install - Windows

User Account Control

Do you want to allow this app to make
changes to your device?

E Go Installer

Verified publisher: Google LLC
File origin: Downloaded from the Internet

N

Show more details

Confirm that YES, you want to allow this app to make changes.

Install - Windows

‘ "M Go Programming Language arm64 go1.23.3 Setup

Installing Go Programming Language arm64 go1.23.3

Please wait while the Setup Wizard installs Go Programming Language armé4 go1.23.3.

Status: Copying new files
I

N

Install - Windows

¥ Go Programming Language arm64 go1.23.3 Setup

Completed the Go Programming
Language arm64 go1.23.3 Setup Wizard

Click the Finish button to exit the Setup Wizard.

Install - Windows

2 windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\frank> go version
go version gol.23.3 windows/armé6d

FS CO\USEIS\TIrank~ |

Once done, you can open a terminal—whether PowerShell or Command Prompt or another—and simply enter “go version” to see whether you have access
to the go binary and what version is installed.

Install - Windows

Go.dev Windows Installer installs Go by default in

C:\Program Files\Go\

Go modules (e.g., seen using go get <module>) are
located in

C:\Users\<user>\go\pkg\

Go apps (e.g., seen using go install <app>) are
located in

C:\Users\<user>\go\bin\

.

If, like me, you like to know where programs put their files, | provide this just as a quick reference should you ever need to go in and remove the setup. |
will try to show this for every installation approach.

Install - Windows

Option #2: Chocolatey %ca@a@

The Package Manager for Windows

https://chocolatey.org/

Simply open PowerShell as an administrative shell
(i.e., “Run as Administrator”) and enter

choco install golang

EX¥ Administrator: Windows PowerShell

P dir

Install - Windows

EX Administrator: Windows PowerShell
Mode La

_ Be aware of this

~ if you run Windows 11

Be warned if you are running Windows 11 ARM64—as | was doing for taking these screenshots—that, at least as of 3 Dec 2024, Chocolatey appears to be
downloading/installing the x64 version of the Go compiler, NOT the ARM64! This in turn means you will be running your Go compiler through Windows’
emulation layer. So not ideal. | do not recommend Chocolatey at this time.

Install - Windows

Chocolatey uses Go.dev installer, so also installs Go in

C:\Program Files\Go\

Go modules (e.g., seen using go get <module>) are
located in

C:\Users\<user>\go\pkg\

Go apps (e.g., seen using go install <app>) are
located in

C:\Users\<user>\go\bin\

.

Since Chocolatey simply uses the official Go.dev installers behind the scenes, the paths are the same.

©

Installing

Install

& Install Go

Welcome to the Go Installer

You will be guided through the steps necessary to install this

® Introduction
software.

[Continue

For macQOS, this is also your typical .PKG installer.

Install

& Install Go

Select a Destination

Introduction How do you want to install this software?

® Destination Select
Install for all users of this computer

Installing this software requires 240.5 MB of space.

You have chosen to install this software for all users of
this computer.

Go Back[Continue

Install

& Install Go
Standard Install on “Macintosh HD"

oanehon This will take 240.5 MB of space on your computer.
Destination Select Click Install to perform a standard installation of this software
for all users of this computer. All users of this computer will be

A .
Installation Type able to use this software.

Change Install Location...

Go Bacl{ Install

Install

e
. e !

Installer

Installer is trying to install new software.

Introduction Enter your password to allow this.

Destination Select
Frank

® Installation Type

[|Password

Install Software l

Cancel

Change Install Location...

Go Back Install

Here be sure to enter your Mac user password so the installation can proceed.

Install

& Install Go

Installing Go

Introduction
Destination Select
Installation Type

ehinstallation Running package scripts...

Install

& Install Go

The installation was completed successfully.

Introduction
Destination Select
Installation Type

Installation

® Summary The installation was successful.

The software was installed.

Install

[JCN J {3 frank — -zsh — 86x26

Last login: Tue Dec 3 13:36:09 on ttys0ee
AnkOFranks—Vi al=Machine ~ % go version
go version gol.23.3 darwin/

Once finished, simply open Terminal (or whichever terminal program you use such as iTerm2, Wave, etc.) and enter “go version” to see if the Go compiler is
installed and what version it is.

Install - macOS

Go.dev macOS Installer installs Go in

/usr/local/go/

Go modules (e.g., seen using go get <module>) are
located in

/Users/<user>/go/pkg/

Go apps (e.g., seen using go install <app>) are
located in

/Users/<user>/go/bin/

Since macOS is basically UNIX, you can expect to find the Go files in the usual places. The one thing to note is that as you download Go packages and/or
apps (similar to using ‘pip install’ for Python), these are placed in a “go” directory within your user’s home directory. Should you ever truly need to clean
house, simply deleting this directory removes everything user-specific that you have for Go.

Install - macOS
S

dape
Option #2: Homebrew .]

The Missing Package Manager for macOS (or Linux)
https://brew.sh/

Simply open Terminal and enter

brew install golang

[SIDE NOTE: Simply having Homebrew installed provides you with a
version of Pythond3 (it comes with the XCode Cormmand Line Tools that
Homebrew installs).]

I

Though | am not a Homebrew user, the steps for installing the Go compiler with Homebrew are pretty straightforward.

— . B
[ON] £3 frank — -zsh — 143x60

frank@Franks-Virtual-Machine ~ %'brew install golan; '
==> Downloading https://ghcr.io/Vv: omebrew/core/go/manifests/1.23.3

==> Fetching go
==> Downloading https://ghcr.io/v2/homebrew/core/go/blobs/sha256:1bbcle16a0048f6d42a0522361eded589d4efeda3e2bc7527a3ca5bcé65e8d7e7

==> Pouring go--1.23.3.armé4_sequoia.bottle.tar.gz
==> Caveats
Homebrew's Go toolchain is configured with
GOTOOLCHAIN=local
per Homebrew policy on tools that update themselves.
==> Summary
In /opt/homebrew/Cellar/go/1.23.3: 13,235 files, 268.2MB
==> Running ‘brew cleanup go'...
Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP.
Hide these hints with HOMEBREW_NO_ENV_HINTS (see 'man brew').
[frank@Franks-Virtual-Machine ~ % go version
go version gol.23.3 darwin/armé4
frank@Franks—Virtual-Machine ~ %

Install - macOS

Homebrew macOS Installer installs Go in

/opt/homebrew/bin/go/

Go modules (e.g., seen using go get <module>) are
located in

/Users/<user>/go/pkg/

Go apps (e.g., seen using go install <app>) are
located in

/Users/<user>/go/bin/

.

Here the only thing to note is that the Homebrew version of the Go compiler installs under Homebrew’s directory.

Install - macOS

Option #3: MacPorts Ports

An open-source community initiative to design an
easy-to-use system for compiling, installing, and
upgrading either command-line, X11 or Aqua based
open-source software on the Mac operating system

https://www.macports.org/
To install Go, simply open Terminal and enter

sudo port install go

For those who use MacPorts, installing the Go compiler is also quite easy.

Install

03 frank — -zsh — 125x40

frank@Franks-Virtual-Machine ~ %lsudo port install go]

[Password:

—-—=>
——>

Fetching archive for go

Attempting to fetch go-1.23.3_0.darwin_24.armé4.tbz2 from https://packages.macports.org/go
Attempting to fetch go-1.23.3_0.darwin_24.armé4.tbz2 from https://mirrors.mit.edu/macports/packages/go
Attempting to fetch go-1.23.3_0.darwin_24.armé4.tbz2 from http://bos.us.packages.macports.org/go

Fetching distfiles for go

Attempting to fetch gol.23.3.src.tar.gz from https://distfiles.macports.org/go
Attempting to fetch gol.23.3.darwin-armé4.tar.gz from https://distfiles.macports.org/go
Attempting to fetch gol.23.3.darwin-armé4.tar.gz from https://storage.googleapis.com/golang/

Verifying checksums for go
Extracting go

Configuring go

Building go

Staging go into destroot
Installing go @1.23.3_0
Activating go @1.23.3_0
Cleaning go

Scanning binaries for linking errors
No broken files found.

No broken ports found.

frank@Franks-Virtual-Machine ~ % go version
go version gol.23.3 darwin/armé4
frank@Franks-Virtual-Machine ~ % [

Install

MacPorts installs Go in

/opt/local/lib/go/
(with symlinks in /opt/local/bin/ to go and gofmt).

Go modules (e.g., seen using go get <module>) are
located in

/Users/<user>/go/pkg/
Go apps (e.g., seen using go install <app>) are in

/Users/<user>/go/bin/

.

This was one of the more unique installations, in that the Go compiler/etc. were installed down under /opt/local/lib/, and then symlinks were created in /
opt/local/bin/ that pointed to the “go” and “gofmt” binaries.

&

Installing

Install - Linux

RHEL/CENTOS/Rocky/Alma Linux

rpm/yum/dnf install golang

Ubuntu/Debian Linux
apt install golang

The easiest way to install the Go compiler on Linux is simply to download and decompress the respective .tar.gz file to your setup. That should go into the
usual “/usr/local/go” directory. That said, if you prefer using a package manager, the respective ones work just fine, though you will often find that the
version of Go on the repositories can be a bit behind.

Install - Linux

Install in your own user account;e.g.,
$ cd ~

$ mkdir install

$ cd install

$ wget https://go.dev/dl/gol.23.3.1linux-
amd64.tar.gz

$ cd ..

$ tar zxvf install/gol.23.4.1linux-
amd64.tar.gz

This installs in ~/go/. Note this may require modifying
your GOPATH, e.g., adding this to your shell profile:
export GOPATH=$HOME/go.my

Another option that | use is to simply download and decompress the relevant .tar.gz file right in my Linux user account on those systems where | do not
have root access. The reality is you can apply this technique to ANY of the OSes including Windows. You simply need to be sure you modify your PATH
variable and a few other environment variables so that Go knows where to look. Then it “just works.”

That covers getting you setup.

Now it’s time to get into the reason you’re really here.

Comments

HHM Multiline strings can
be written using three
s, and are often used
as documentation.

Comments in Go are similar to C. Single line comments use double slashes, while multi-line comments use /* and */. The most unique thing in Go are
build tags, which are a line comment starting with “//go:build” followed by a boolean logic of tags. These work in conjunction with the “go build

-tags="...”” command to handle conditional compilation, such as when you have, for example, a free app, a pro app, and an enterprise app where varying
features are included in the final binary.

Primitives and Operators

-2 -2

1.2 1.2
(1+2)-3%4/5 (1+2)-3%4/5
int(6) int(6)

Primitives and operators in Go are similar to most programming languages. Numbers—integers and floats—along with math operators like +, -, *, /, etc.
Boolean values and operators. Even strings are very similar.

The key thing to note is that Go is strongly typed, so once a value is set to be of a certain type, you need to typecast/convert variables/values to match in
order to work on them together (e.g., if you want to add an integer and a float in Go, you need to convert both to integers or both to floats, then add).

Variables (declared)

name = "Frank" name string = "Frank"
day = 12 day int = 12

Variable naming in Go is similar to most languages. That said, there are some interesting differences. Here we see an example of both defining a variable,
setting its type, and assigning it a value.

Also note that | had to use print statements in Go to use the variables assigned, as the Go compiler will complain if you do things like define a variable and
then never use it, or include a package but never use anything from it, etc.

Variables (inferred)

name = "Frank" = "Frank"
day 12 day

day = "Fred" day = "Fred"

Here we see an example of using “:=“—known as the “short variable declaration operator”—which allows you to both define and assign a variable a value in
one step, where you let the Go compiler “infer” the type of the variable based on the value being assigned. Here “name” is inferred to be a string variable
while “day” is inferred to be an integer.

UNLIKE Python, where you can easily set the value of a variable one moment as an integer and then later as a string, the Go compiler does not allow this.
Go will complain that you are trying to set an integer variable as a string and simply will not compile. This can prevent a multitude of issues.

In fact, if you use the various extensions available in such IDEs as Microsoft’s Visual Studio Code, all of this will be pointed out to you right in the editor,
preventing you from making many common mistakes even before trying to compile.

For those who use things like the Flake8 extension for Python, this should be familiar. The difference is that while Flake8 can help point this out while
coding, if you are not in the editor and you simply run the Python code, the Python interpreter will gladly do so. The Go compiler will never let you compile
such code.

Packages

Python
import os import "os"

import os, math import (
IIOS
"math"

"github.com/google/uuid"

from math import exp

When the time comes to import packages, again things are similar though not the same. Where Python lets you import multiple modules on the same line
separating each with a comma, in Go you enclose them in parentheses and separate them with whitespace/newlines. While Python lets you import a single

function from a module, Go does not. This is not important, as when you compile your Go code, only the relevant bits from each module are compiled into
the final executable.

Finally, where Python relies on modules installed using something like ‘pip’, in the Go world there is no centralized package authority like PyPi. Instead,
anyone can host a Go package wherever they like. To access it, you simply reference the URL to reach the source code as shown here. This can be both
good (no single “supply chain attack” can take out the language’s module repository) and bad (there is no central location to scan for viruses/etc.).

http://github.com/google/uuid

if

__name__ ==

Functions

fn(first):
full = first + " Seesink"
return full, 12

main():
fullname, day = fn("Frank")

print("Hello", fullname)
print("It is Dec.", day)

__main__
main()

(€ o)

main
import "fmt"
fn(first string) (full string, age int) {

full = first + " Seesink"
return full, 12

main() {
fullname, day := fn("Frank")

fmt.Println("Hello", fullname)
fmt.Println("It is Dec.'", day)

Conditionals (if)

Python Go

age = 15 := 15

if age > 21: if age > 21 {

print("You can drink") fmt.Println("You can drink")
elif age > 12: } else if age > 12 {

print("You can watch TV") fmt.Println("You can watch TV")
else: } else {

print("Go to bed") fmt.Println("Go to bed")

by

Conditionals (switch)
Python Go

main
import "fmt"

main(): main() {

X = 42 X 1= 42

if x == 0: switch x {
pass case 0:

elif x == == 27 case 1, 2:
print("So low.")

elif x 42: fmt.Println("So low.")
print("The meaning of life.") case 42:

elif x == 44: fmt.Println("The meaning of life.")
pass

else:

pass
case 44:

if _name__ == "__main__
main() default:

i

https://go.dev/wiki/Switch#fall-through

Error Handling
Python Go

main

import (
"errors"
"fmt"

countdown (num) : countdown(num int) (int, error) {
if num < 0: if num < @ {
return @, "Countdown < 0." return @, errors.New("Countdown < 0.")
print("Counting down from", num) }
return num - 1, fmt.Println("Counting down from", num)
return num - 1,

main():
num, err = countdown(5) main() {
if err: num, err := countdown(5)
print(err) if err != {
print(num, "good.") fmt.Println(err)
}
num, err = countdown(-1) fmt.Println(num, "good.")
if err:
print(err) num, err = countdown(-1)
if err != {
if _ _name__ " main__": fmt.Println(err)
main() }

Since we discussed functions and conditionals, let’s quickly comment about error handling in Go. In Python, exception handling is typically done using
try/except blocks, the idea being that if the Python interpreter hits on something it can’t handle, it will dump a stack trace.

In Go, the expectation is that you handle errors at each point in the program where they may occur. Typically you will see code similar to the following,
where a function call is made, and the return values include whatever the function’s purpose is, along with an extra value for any errors returned. So if the
function encounters an error, instead of blowing up the program, it passes back the error to the calling function. That function, in turn, is expected to
either handle the error or yet again pass it back to its calling function.

Of course, “the buck stops here” at the main function. So either you handle the error, or your program goes BOOM!

The underscore (¢)
Python Go

main

import "“fmt"

main(): main() {

mydict = { mydict := [stringlstring{
"first": "Frank", "first": "Frank",
"last": "Seesink", "last": "Seesink",

"year": "“2024" "year": '"2024",
s

for key, val in mydict.items(): _,lval := range mydict {
print(val) tmt.Println(val)

if _name__ == "_ main__ ":
main()

A quick explanation of the use of the underscore (“_") in Go.

Sometimes you don’t need a value that is returned by a function. For example, maybe you don’t care if an error occurred and you wish to ignore it
altogether. For such cases you have the underscore. Itis a placeholder that says “Yeah, we know something goes here, but we don’t care.”

Now here | quickly show you both the map type—which is the Go equivalent of a dictionary in Python—and the use of the underscore. And much as in
Python if you use the .items() function which returns both the key and the value of each item, in Go the ‘range’ keyword does the same for a map. But
maybe we only care about the value. While in Python you COULD simply use the .values() function to ONLY return values from a dictionary (just as you

could use the .keys() function to only return dictionary keys), typically in Go you would do something like this, where you simply use the “_" in the place
where the key is returned.

Loops (for)

Python Go

main
import "fmt"

main(): main() {
for i in ["dog","cat"]: for _, val := range []lstring{"dog","cat"} {
print(i) fmt.Println(val)
b

for i in range(5): for i := 0; 1 < 5; i++ {
print(i) fmt.Println(1i)
b

X =20 X 1= 0

while x < 5: for x < 5 {
print(x) fmt.Println(x)
X +=1 X++

if __name__ == "__main__":
main()

While the “for” loop in Python is more like an iterator method, in Go it is more traditional in nature. Here you can see examples of how Python would
iterate over a list of strings or a range of numbers, vs. how Go would do the same thing.

Go’s “for” loops are more like what is seen in C-like languages, where you have an init statement that is executed before entering the loop, a boolean

condition expression that is evaluated before each iteration (and when false causes the loop to end), and a post statement executed after each iteration, all
separated by semicolons (“;”).

Also note that Go has no “while” keyword. A “while” loop is really just a “for” loop that does not have an init or post statement. It solely has a boolean
condition expression that determines when the loop ends.

Go routines
Python

import concurrent.futures

with concurrent.futures.ThreadPoolExecutor() as executor:

results = executor.map(pingSite, sites)

import asyncio

lgo|pingSite(site)

pingSite():
print("pingSite started")
await asyncio.sleep(5)
print("pingSite done")

main():

asyncio.ensure_future(pingSite())
print('Do some actions 1')

await asyncio.sleep(5)

print('Do some actions 2')

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

Here comes the real power of Go, especially when writing programs which have to deal with many things (such as network devices) at a time.

Python was developed in a time of single-core CPUs. Famously Python has the GIL (Global Interpreter Lock), a feature that Guido van Rossum put into
Python to simplify execution. The challenge is that the GIL also heavily restricts Python’s ability to leverage modern, multi-core CPUs, as it only lets one
thing run at a time in essence. In order to do better, you either have to leverage something like concurrent.futures (which takes its name from its Java-
based counterpart)—a module that lets you run either a pool of threads or a pool of processes—or something like asyncio, which provides cooperation
multitasking a la OSes like Windows 3.1/95 in days of yore.

Go was built in the time of multi-core CPUs. So foundational to how it works, Go has built-in support for what are called “Go routines”, or more
generically, “green threads.” These are super lightweight processes that the Go runtime handles for you, letting you focus on your coding.

The keyword you need to remember is simply “go.” Add this in front of any function call, and now that function is a Go routine. These Go routines will run
either until they finish executing, or when the main thread of the program exits, whichever comes first. This is KEY to understand. If you write a Go
routine to do something, and it is in the middle of executing when the main thread reaches its end, that Go routine dies. Which brings us to...

WaitGroups & Channels
Python

nt.futures
import subprocess

pingSite(site):
try:
result = subpr
["ping",
stdout 3
stderr=subpro
text=

f result.returncode A
return f"{site} is reachable"

urn f"{site} is not reachable"
eption a B
return f"Error pinging {site

main():

sites = ["google.com", "github.com", "nonexistent.website"]

with concurrent.futures.ThreadPoolE tor() as executor:

results = executor.map(pingSite, sites)

for site, result in zip(sites, results):
print(result)

if __name__
main()

__main__

Go

main

(

wg sync.WaitGroup

sites = []string{"google.com", "github.com",
stent.website"}

results = make(string, len(sites))

pingSite(site string) {

defer wa.Done()

cmd exec.Command("ping", "-c", "1", site)

if err := cmd.Run(); err ! {
results <— fmt.Sprintf(is not reachable", site)
return

+

results <— fmt.Sprintf("%s is reachable", site)

return

main() {
_, site := range sites {
wg.Add (1)
go pingSite(site)
}
wg.Wait()
close(results)

Only prints results
once all threads
finish

r result := range results {
fmt.Println(result)

http://google.com
http://github.com
http://google.com
http://github.com

Language Similarities
Python Go

import os

itsvalid(): itsvalid() {

print("Valid day of the month") fmt.Println("Valid day of the month")
cwd = os.getcwd() cwd, _ := o0s.Getwd()

print(cwd) fmt.Println(cwd)

main(): main() A

name = "Frank" name := "Frank"
day = 12 day := 12

if day >= 1 day < 31: if day >= 1 && day < 31 {
itsvalid() itsvalid()
¥

if __name__ == "__main__": fmt.Println(name)
main()

Here is a quick comparison showing how Python and Go look side-by-side. This example has a main function where variables are defined and used, along
with another function that is called. There is a conditional with some boolean operators, along with a comment.

As you can see, while the syntax differs, there is more that they have in common than they do in difference. But let’s delve into the specifics here.

Workilow

g0 mod init

$ go mod init github.com/fseesink/GoTest
g0: creating new go.mod: module github.com/

fseesink/GoTest
go: to add module requirements and sums:

go mod tidy

When starting a new project, you typically perform a “go mod init” to create a go.mod file that contains information like where your Go module/app’s code
can be found, along with what version of the Go compiler was used.

g0 mod init

github.com/fseesink/GoTest

1.23.4

Here’s a simple example of the output of a new go.mod file. Over time, as you add in other packages/modules, this file will contain this information
including version numbers used.

g0 mod tidy

As you work on your project, you may need to perform a “go mod tidy” command to tidy up the go.mod file so that it is up-to-date. This will trigger Go

going through your code making sure all the dependencies are accounted for, and downloading any and all packages that you don’t have yet or that are
out-of-date.

This is a bit like using “pip3 freeze > requirements.txt” combined with “pip3 install -r requirements.txt”.

Workiflow

maln

print("Hello world") "fmt"

main() {
fmt.Println("Hello world")

$ python3 helloworld.py $ go run helloworld.go
or
or if permissions set, simply |$ go run
to run interactively.
$ helloworld.py
Compile and run executable
with
$ go build .
$ helloworld

Ok let’s discuss workflow.

When you write code in Python, you typically write code in an editor, save the file, then execute the file from a terminal session.

When you write code in Go, you typically do the same, only you have to compile your code first before running it. Go makes this easy in fact by offering
the “go run” command, which performs both duties in one shot. This makes your workflow very similar to Python.

Workilow Performance

maln

print("Hello world") "fmt"

main() {
fmt.Println("Hello world")

Time to compile
AND run the
program (when
developing)

$ time python3 helloworld.py $ time go run hellowbrld.go
Hello world Hello world
python3 helloworld.py (0.02s go run helloworld.go |0.14s
user 0.02s system 36% cpu user 0.29s system 49% cpu
0.111 total 0.860 total

L) £ $ go build helloworld.go

e § time ./helloworld

Hello world
./helloworld [0.00s)user 0.00s

system 2% cpu 0.135 total

Now let’s talk performance. Admittedly this is too simplistic an example. But using this example, you can see that executing the Python “Hello World”
program takes .02s. The Go “Hello World” program, when you use “go run”, takes .14s. However, once you are done developing, you simply compile your
Go program one time. After this, you just run the binary. And as you can see here, the binary executes so quickly that it is listed as .00s. So you get
nearly the performance of Python while developing, and much better performance once you truly compile to a binary.

Also note the CPU usage in each case. The Python script consumed 36% CPU, while the Go binary only required 2%. This is significant.

Go Cross-Compilation

e (o creates binary executables specific to an OS/
architecture (e.g., x64 Windows, ARM64 Linux)

Go can cross-compile to ANY supported OS/
architecture combination FROM any supported
OS/architecture. Simply set GOOS and GOARCH
environment variables.

$ GOOS=linux GOARCH=arm64 go build .

Finding Packages

@ pkg.go.dev

Why Go v Learn Docs v Packages Community ~

Q_ kearch packages or symbols

Tip: Search for symbols within a package using the # filter. For example “golang.org/x
#error” or "#reader io". Search help &

Frequently asked questions:

How can | add a package?
How can | remove a package?

How can | add a go badge in my README file?

Whv Go Get Started Packaaes About Connect

https://pkg.go.dev/

Finding Go packages is as simple as visiting this site and typing in what you are looking for.

Finding Packages

@ pkg.go.dev

Why Go v Learn Docs v Packages Community ~

Packages Symbols

Showing 25 modules with matching packages. Search help

ssh (golang.org/x/crypto/ssh) 4"

Package ssh implements an SSH client and server.
Imported by 19,367 | v0.29.0 published on Nov 7, 2024 | BSD-3-Clause

Other packages in module golang.org/x/crypto: sshjagent sshiterminal sshjknownhosts

ssh (github.com/gliderlabs/ssh)

Package ssh wraps the crypto/ssh package with a higher-level API for building SSH servers.
Imported by 933 | v0.3.7 published on Mar 18,2024 | BSD-3-Clause

ssh (gopkg.in/src-d/go-gitv4/plumbingjtransport/ssh)
Package ssh implements the SSH transport protocol.

Imported by 514 | v4.13.1 published on Aug 1, 2019 | Apache-2.0

Other major versions: v3

ssh (github.com/go-git/go-git/v5/plumbing/transport/ssh)
Package ssh implements the SSH transport protocol.
Imported by 468 | v5.12.0 published on Mar 19,2024 | Apache-2.0

sftp (github.com/pkg/sftp)

Package sftp implements the SSH File Transfer Protocol as described in ilezilla-project.or ietf-secsh-filexfer-
02.txt
Imported by 2,558 | v1.13.7 published on Jun 5, 2024 | BSD-2-Clause

https://pkg.go.dev/

For example, Go has SSH support built-in, though note that it’s location (golang.org/x/crypto/ssh) tells you that it is under the Go project but outside the
main Go tree. That means that they are developed under looser compatibility requirements than the Go core. But still, there is no need for an external
library such as netmiko/etc. to perform SSH functions.

Finding Packages

O @ = & pka.go.dev

Search packages or symbols Docs v Packages Community ~

Discover Packages > golang.org/x/crypto > ssh (O

ssh | package

Version: v0.30.0 (EE8Y) | Published: Dec4,2024 | License: BSD-3-Clause | Imports:47 | Imported by: 19,387

Details. @ Valid go.mod file @ @ Redistributable license @ © Tagged version @ ® Stable version @

Learn more about best practices

posil c: pto

Links @ Report a Vulnerability (& Open Source Insights

Documentation

<> Documentation

Overview
Package ssh implements an SSH client and server.

SSH is a transport security protocol, an authentication protocol and a family of application protocols. The most typical application
level protocol is a remote shell and this is specifically implemented. However, the multiplexed nature of SSH is exposed to users that
wish to support others.

References:

[PROTOCOL] : https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL? rev=HEAD
[PROTOCOL. certkeys]: http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL. certkeys?rev=HEAD
[SSH-PARAMETERS] : http://www.iana.org/assignments/ssh-parameters/ssh-parameters.xml#ssh-parameters—1

This package does not fall under the stability promise of the Go language itself, so its APl may be changed when pressing needs
arise.

Index

https://pkg.go.dev/

Finding Packages

Why Go v Learn Docs v Packages Community ~

http

Packages Symbols

Showing 25 modules with matching packages. Search help

http (net/http) (standard iibrary k—

Package http provides HTTP client and server implementations.
Imported by 1,505,026 | go1.23.4 published on 2daysago | BSD-3-Clause
Related packages in the standard library: i +2 more

autorest (github.com/Azure/go-autorest/autorest)

Package autorest implements an HTTP request pipeline suitable for use across multiple go-routines and provides the shared
routines relied on by AutoRest (see ithub.com/ itorest/) Go code.

Imported by 140,434 | v0.11.29 published on Apr 27,2023 | Apache-2.0

gin (github.com/gin-gonic/gin)
Package gin implements a HTTP web framework called gin.
Imported by 134,353 | v1.10.0 published on May 7, 2024 | MIT

http (github.com/go-kit/kit/transport/http)
Package http provides a general purpose HTTP binding for endpoints.
Imported by 4,832 | v0.13.0 published on May 29, 2023 | MIT

http (google.golang.org/apiftransport/http)

Package http supports network connections to HTTP servers.
Imported by 2,712 | v0.210.0 published on 1dayago | BSD-3-Clause
Other packages in module google.golang.orgfapi: transport

https://pkg.go.dev/

Another package you might want to leverage is the http package.

Finding Packages

U @ = & pka.go.dev

Search packages or symbols Why Go v Learn Docs v Packages Community ~

Discover Packages > Standard library > net > http [0

http package standard library

Version: go1.23.4 (Y | Published: Dec3, 2024 | License: BSD-3-Clause | Imports:46 | Imported by: 1,505,278

Details. @ Valid go.mod file @ @ Redistributable license @ © Tagged version @ @ Stable version @

Learn more about best practices

posi c

Links @ Report a Vulnerability

Documentation

<> Documentation Rendered for | linux/amd6éa ~

Overview

Clients and Transports
Servers
HTTP/2

Package http provides HTTP client and server implementations.

Get, Head, Post, and PostForm make HTTP (or HTTPS) requests:

resp, err := http.Get("http://example.con/")

resp, err i= http.Post("http://exanple.con/upload”, "image/jpeg”, &buf)

resp, err := http.PostForm("http://example.com/form",
url.Values{"key": {"Value"}, "id": {"123"}})

The caller must close the response body when finished with it:

Unlike SSH, however, the HTTP package IS part of the Go core. So Go has full HTTP support built-in, meaning no need for something like the “requests”
library in Python.

VSCode plugins

When developing code, if you use any kind of Integrated Development Environment (IDE) such as Visual Studio Code (VSCode), | strongly encourage you to
look for extensions that support Go. | use VSCode, and the Golang extensions are absolutely fantastic. With them installed, many things which would

require compiling to trigger a warning/error are shown right in the code editor. And on each save, the extension runs “go fmt” in the background,
guaranteeing that your code will always be formatted according to the Go standard.

To Learn More...

Go (Golang)

O | FEhtpsi/go.dev

Why Go ~ Docs ~ Packages Community ~

Build simple, secure, scalable systems with Go

~ Anopen-source programming language supported by Google
~ Easytolearn and great for teams

v Built-in concurrency and a robust standard library

+ Large ecosystem of partners, communities, and tools

Download packages for Windows 64-bit, macOS, Linux, and mora

The go command by default downloads and authenticates modules using the Go madule mirror and Go checksum database run by
Google, Leam mote.

Companies using Go

Organizations in every industry use Go to power their software and services View all stories

Google [P = < bitly capradly

P OB m oMen BEOED
NETFLIX @ RIOT WD ¥ Uber

go.dev uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Loarn more.

https://go.dev/

On the main page of Go.dev, click on the “Learn” link at the top to access educational resources for learning Go.

Go (Golang)

] LearNinG

e Learning Go

https://www.linkedin.com/learning/
learning-go

e Go for Python Developers

python-developers

e https://learnxinyminutes.com/docs/g0/

Here are just a few examples of online courses you could take to learn more about Go.

That last site is very handy for quickly refreshing yourself on a language.

https://www.linkedin.com/learning/learning-go
https://www.linkedin.com/learning/learning-go
https://www.linkedin.com/learning/go-for-python-developers
https://www.linkedin.com/learning/go-for-python-developers

Books

f
‘ -
g A?"‘ k
RS

Network Automation
with Go

https://www.amazon.com/Network-Automation-
operations-applications-programming/dp/1800560923

OREILLY ok,
oy

Network

Programmability

& Automation

Skills for the Next-Generation

3
Network Engineer

https://www.amazon.com/Network-
Programmability-Automation-Next-
Generation-Engineer/dp/1098110838

There are also several books out there on just Go or on using Go in network automation specifically. Here are two that | have which | can highly
recommend.

ICONFERENCE = DOCS PS ADD-ONS BLOG EVENTS SUPPORT

But also, Fyne apps can be built for all platforms and stores!

Gallery

e ——ey—]

https://fyne.i‘;/ "

Once you get past writing CLI tools, if you wish to write a GUI application, know that in Go you have packages like the fyne.io library. If you are familiar
with things like GTK, Qt, Tcl/Tk, wxWidgets, or Tcl/Tk, Fyne provides you with similar features while staying in Go. That is, when you’re done, once again
you have a single binary executable for a given OS/architecture that provides a GUI application.

If you like both

https://www.amazon.com/Go-Gopher-Tee-Developer-
Umbrella/dp/BODJZKSDXT

BN

If like me you enjoy both Python and Go, there’s even a shirt out there with both now!

Thank You

https://frank.seesink.com/presentations/
Internet@TechEx-Fall2024/

Frank Seesink
frank@seesink.com
frank@unc.edu

https://frank.seesink.com/presentations/Internet2TechEx-Fall2024/
https://frank.seesink.com/presentations/Internet2TechEx-Fall2024/
mailto:frank@seesink.com

